
DAKOTA Advanced Topics:

Interfacing and Parallelism

http://dakota.sandia.gov

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation,

a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-AC04-94AL85000.

SAND2012-8608P

http://dakota.sandia.gov/

Basic Steps to Using DAKOTA

1. Define analysis goals; understand how DAKOTA helps

and select a method to use

2. Access DAKOTA and understand help resources

3. Workflow: create an automated workflow so DAKOTA

can communicate with your simulation (Advanced Topic)

– Parameters to model, responses from model to DAKOTA

– Typically requires scripting (Python, Perl, Shell, Matlab) or

programming (C, C++, Java, Fortran)

– Workflow usually crosscuts DAKOTA analysis types

4. DAKOTA input file: Jaguar GUI or text editor to configure

DAKOTA to exercise the workflow to meet your goals

– Tailor variables, methods, responses to analysis goals

5. Run DAKOTA: command-line; text input / output

Possible Directions

• See process of interfacing DAKOTA to a black-

box application through file system

• See current state of DAKOTA library interface

• Understand MPI vs. local parallelism

• Understand modes of application parallelism (in

queue, out of queue, serial, parallel apps)

• From DAKOTA 101:

– Matlab, Python interfacing

– DAKOTA as a library

– Basics of HPC at SNL

Cantilever Beam

Model

DAKOTA Input File DAKOTA Output Files

Code

Input

Code

Output

DAKOTA Parameters File
{x1 = 123.4}

{x2 = -33.3}

Use APREPRO/DPREPRO

to cut-and-paste x-values

into code input file

User-supplied automatic

post-processing of code

output data into f-values

DAKOTA executes
sim_code_script

to launch a

simulation job

DAKOTA Results File
999.888 f1

777.666 f2

DAKOTA Executable

Method

Variables Responses

Interface

Interface communicates through

file system and user-supplied script

DAKOTA Execution & Info Flow

DAKOTA Input File

• Commands

• Options

• Parameter definitions

• File names

DAKOTA Output Files

• Raw data (all x- and f-values)

• Sensitivity info

• Statistics on f-values

• Optimality info

CALORE thermal analysis

ALEGRA shock physics

SALINAS structural dynam

Premo high speed flow

 (your code here)

Code

Input

Code

Output

DAKOTA Parameters File
{x1 = 123.4}

{x2 = -33.3}, etc.

Use APREPRO/DPREPRO

to cut-and-paste x-values

into code input file

User-supplied automatic

post-processing of code

output data into f-values

DAKOTA executes
sim_code_script

to launch a

simulation job

DAKOTA Results File
999.888 f1

777.666 f2, etc.

DAKOTA Executable

Sensitivity Analysis,

Optimization, Uncertainty

Quantification, Parameter

Estimation

DAKOTA Application Interfacing Class

Application Stand-in:

Rosenbrock “Banana” Function

f(x1,x2) = 100*(x2-x1*x1)2 + (1-x1)2

-2  x1  2

-2  x2  2

Minimum: f(x1,x2) = f(1,1) = 0.0

-2 0 2
0

500

x
1

-2 0 2
0

1000
2000

x
1

-2 0 2
0

2000
4000

x
1

-2 0 2
0

2000
4000

x
2

-2 0 2
0

500

x
2

-2 0 2
0

2000
4000

x
2

x2=2

x2=0

x2=-2

x1=2

x1=0

x1=-2

Demo:

Rosenbrock as a “black box”

• Locate example in
Dakota/examples/script_interfaces/generic

• Described in DAKOTA 5.2 User’s Manual 18.1

• Explore top-down (DAKOTA down to application and back)

• Since you’re familiar with your application, may want to

build from application up

Interfacing to Your Simulation

(Assuming Text-based I/O)

1. Annotate your input file to create template
 { stress } { alpha1 }

2. Create a representative DAKOTA params.in file in aprepro

format (see User’s 11.6) and test:
dprepro params.in analysis.in.template analysis.in

3. Verify commands to run application with analysis.in

4. Determine how to automatically extract results of interest

(direct application to export, shell commands, python, perl,
visual basic, etc.) to create results.out (see User’s 13.2)

5. Assemble into a script, e.g., run_analysis.sh; test script with

sample params.in:
./run_analysis.sh params.in results.out

6. Test with a simple DAKOTA input deck, e.g., parameter study

Parallelism

• See Application Parallelism slides shipped in

Dakota/examples/parallelism

Nested parallel models support large-scale applications and architectures.

1. SMP/multiprocessor

workstations: Asynchronous

(external job allocation)

2. Cluster of workstations:

Message-passing

(internal job allocation)

3. Cluster of SMP’s: Hybrid

(service/compute model)

4. MPP:

Internal MPI

partitions

(nested

parallelism)

Serial

DAKOTA

job1 & job2 & job3 & job4 &

master
slave slave slave slave

job1 job2 job3 job4

master
slave slave slave slave

jobs & jobs & jobs & jobs &

Parallelism from a computing

platform perspective

1. Algorithmic coarse-grained parallelism: independent fn.

Evaluations performed concurrently:

• Gradient-based (e.g., finite difference gradients, speculative opt.)

• Nongradient-based (e.g., GAs, PS, Monte Carlo)

• Approximate methods (e.g., DACE)

• Concurrent-method strategies (e.g., parallel B&B, island-model

GAs, OUU)

2. Algorithmic fine-grained parallelism: computing the internal
linear algebra of an opt. algorithm in parallel (e.g., large-scale
opt., SAND)

3. Function evaluation coarse-grained parallelism: concurrent
execution of separable simulations within a fn. eval. (e.g.,
multiple loading cases)

4. Function evaluation fine-grained parallelism: parallelization of
the solution steps within a single analysis code (e.g., SALINAS,
MPSalsa)

Parallelism from an

algorithmic perspective

